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The generation of magnetic fields by the turbulent motions of a conducting fluid 
driven by thermal convection in the incompressible case is studied by direct 
numerical simulations a t  Rayleigh numbers up to 200 times critical and Prandtl 
numbers 0.2 and 1.  Our results are consistent with a dynamo effect which occurs for 
magnetic Reynolds numbers above a few tens, in the presence of, as well as in the 
absence of, rotation around the vertical axis. In  all cases, the magnetic field is more 
intermittent than the velocity field. 

1. The dynamo problem 
We report here the results of a numerical study of the enhancement of magnetic 

fields through turbulent motions in a horizontal layer of electrically conducting fluid 
heated from below. This ‘turbulent dynamo ’ effect is generally invoked to explain 
the observed fields of planets, stars and galaxies. The stretching of magnetic field 
lines by velocity gradients may, when the magnetic Reynolds number Re, is large 
enough, overcome the Joule dissipation. Re,,, is defined as vo Zo/q, where I ,  and wo are 
respectively a typical large scale length and velocity, and 7 is the magnetic 
diffusivity. The magnetic Reynolds number measures the characteristic time ratio of 
the afore-mentioned two physical processes. 

The dynamo effect is difficult to observe in the laboratory, where typical magnetic 
Reynolds numbers are too low. Experiments to measure the ambient magnetic field 
in the sodium cooling system of the breeder reactor Superphenix are underway. The 
size of this plant is indeed such that the magnetic Reynolds numbers may be 
supercritical (Leorat, Pouquet & Frisch 1981). A similar experiment was performed 
in the Soviet breeder reactor BN 600. A magnetic field was observed which does not 
seem to be generated by a dynamo effect, but rather by a thermoelectric effect (Kirko 
et at. 1983). 

From a theoretical point of view, most works concern the ‘kinematical’ dynamo 
case, in which the velocity field v ,  or its small-scale statistics in the tubulent case, is 
given. The most important theoretical result, in the turbulent context, concerns the 
‘alpha ’-effect (Steenbeck, Krause & Radler 1966), which shows that large-scale 
magnetic fields are strongly amplified by small-scale velocity fields which possess a 
large helicity, i.e. a large correlation between velocity and vorticiky. In  the non- 
helical case, however, the outcome is less clear, since the two competing effects - that 
of stretching by velocity gradients and that of enhanced Joule dissipation through 
nonlinear transfer - have the same characteristic times (Kraichnan & Nagarajan 
1967). Lower bounds on the critical magnetic Reynolds number above which a 
dynamo sets in have nevertheless been obtained in the case of simple flows (see 
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Moffatt 1978 for references). The self-consistent helical problem, in which the 
reaction of the magnetic field on the flow through the Lorentz force is taken into 
account, has been treated analytically by an appropriate modelling of the nonlinear 
terms (Moffatt 1972 ; Pouquet, Frisch & Leorat 1976), and more recently by multiple- 
scale analysis (Montgomery & Hatori 1984; Chen & Montgomery 1986; Matthews, 
Goldstein & Lantz 1986). I n  the three-dimensional case, these studies emphasize the 
importance of magnetic helicity (correlation between magnetic potential and field) in 
the saturation of the large-scale helical dynamo mechanism. In  the non-helical case, 
it was shown in Leorat et al. (1981, hereinafter referred to as paper I) using second- 
order closure techniques, that  in the presence of a driving force for the velocity field 
a magnetic steady state obtains above a critical magnetic Reynolds number Remc of 
the order of 30. It should be noted that in this case the instability is of a local type, 
the magnetically excited scales being of the same order as those of the turbulent 
velocity field: one thus speaks of a small-scale dynamo. More recently, Gilbert, 
Frisch & Pouquet (1988) has shown for an explicit example that a large-scale dynamo 
can obtain in the non-helical case provided that the small-scale turbulence be non- 
parity-invariant. The analysis is that of the standard alpha-effect, but one order 
further in the expansion parameter (small-scale magnetic Reynolds number). The 
study of its nonlinear saturation is underway, both analytically and numerically. 

Another method to  study the nonlinear self-consistent problem, more akin to 
experimentation, consists of three-dimensional direct numerical simulations. How- 
ever, even on the largest available computers, one is presently restricted to rather 
modest Reynolds numbers, whereas such limitations on closures are less stringent, 
because of the exponential discretization used. Numerical experiments were done in 
the homogeneous turbulent case (Meneguzzi, Frisch & Pouquet 1981, hereinafter 
referred to as paper 11) in the simplest possible geometry, i.e. periodic boundary 
conditions in all directions, with random forcing as the mechanical energy source. A 
small-scale dynamo effect in the absence of helicity (Zero helicity spectrum) was 
observed above a critical magnet Reynolds number of order 40, in agreement with 
closure calculations. 

Random forcing allows close comparison with theoretical works using closures ; on 
the other hand, buoyancy provides a more physical and yet simple forcing to the 
velocity field. Several numerical experiments of three-dimensional magnetocon- 
vection have been presented (Gilman & Miller 1981; Glatzmaier & Gilman 1982; 
Glatzmaier 1984). This series of works considers a spherical shell, with the solar 
dynamo in mind. I n  the present paper, we do not wish to address the solar dynamo 
problem in particular, but rather consider questions of a more basic nature, namely 
what are the ingredients necessary to  produce a turbulent dynamo. For this purpose, 
we use the simplest geometry, in order to maximize the space resolution and 
minimize the integration time. We first review briefly the numerical method in $ 2  
and describe several of the tests performed on our code in $3. The results in the non- 
rotating and in the rotating cases are presented in $4  and 5 respectively, and a 
discussion follows in $6. 

2. The numerical method 

MHD equations, in the Boussinesq approximation, are in non-dimensional form 
We consider a flat infinite layer of fluid heated from below. The three-dimensional 

( 1 )  _ -  a'- v x w + j x b - V 1 7 + R a P r f 3 e , + P r V 2 v + 2 0 x v ,  
at 
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ab Pr 
- = V x (0 x b) +-V2b, 
at Prm 
a8 
-= -V.(08)+v,+V28, 
at 1 

(3) 

V - 0  = V - b  = 0. 

We have taken as units of length, temperature and time respectively the height h 
of the layer, the temperature difference between bottom and top AT = To - TI and 
the thermal diffusion time through the layer h 2 / x  (x is the thermal diffusion 
coefficient). In these equations, u is the velocity field, b the Alfv6n speed (proportional 
to the magnetic induction B),  8 the temperature fluctuation with respect to the 
conductive profile To - zAT,  l7 the total pressure p + !p2, Ra the Rayleigh number, Pr 
the Prandtl number and Prm the magnetic Prandtl number u / q ,  where u is the 
kinematic viscosity and q the magnetic diffusivity. Finally, e, is the unit vector in the 
vertical direction z,  w = V x u is the vorticity and j = V x b is proportional to the 
current density. Finally, R is the rotation around the vertical axis. The viscous and 
Joule source terms are omitted in the heat equation since they are small compared 
with the remaining terms (see Chandrasekhar 1961). 

The equations are integrated using a Fourier spectral method (see Gottlieb & 
Orszag 1977). The computation of derivatives and the time stepping are performed 
in Fourier space. The nonlinear terms are computed in real space using fast Fourier 
transforms. The time stepping is done by leapfrog for the nonlinear terms and by an 
implicit scheme (Cranck-Nicolson) for the coupling terms between the equations of 
u and b. For the dissipative terms, we use the following method (Basdevant et al. 
1981) : making the change of variables (in Fourier space) 

(4) 

u' = uexp (Pr k2t ) ,  b' = bexp (k?tPr/Pr,), 8' = Bexp (k2t) ,  

then discretizing the equations and returning to  the original variables, one obtains 
the scheme 

on+' - ~t" exp ( - 2Pr k2&) 
26t 

= P(k)- (v" x con +j" x b" -V17n) exp (- Pr k26t) 

+PrRae,~(B"-1exp(-2Prk26t)+Bn+1), (5 )  

b"+'- bn exp ( - 2Pr k26t/Prm) 
2st = ikx (unxbfl)exp(-Prk2&/Pr,) ,  (6) 

@"+I- On exp ( - 2k2St) 
2st = ik(un8n)exp(-k26t)+~[v,n+1+v~-1exp(-Z2k26tj], (7) 

with the tensor P defined as Pij = (Stj- E,  E j ) / k 2 .  
Aliasing is removed in some of our runs by a method due to Patterson & Orszag 

(1971), which requires no additional memory but doubles the integration time. The 
spectral (i.e. dealiased) version of the scheme allows one to reach higher Rayleigh 
numbers for a given space resolution than with the pseudospectral (i.e. aliased) 
version. This is, however, a t  the cost of miwepresenting somewhat the small-scale 
dissipation. Finally, to prevent the marginal instability of the leapfrog scheme from 
developing, we mix the last three time-steps sporadically according to 

e n  = a(en-1+ 2en + e n + l ) ,  

which preserves the second-order accuracy of the scheme. We use periodic boundary 
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conditions in the horizontal directions, and free-slip stress-free conditions in the 
vertical direction, i.e. we have a t  the top and bottom of the layer 

v, = a,v, = azVy = 0. 

The same boundary conditions apply to the magnetic field if the external medium is 
a perfect electrical conductor (see Chandrasekhar 1961). For 0, the conditions are 
6' = 0 a t  z = 0 or 1. This allows us to expand the fields in sine or cosine series with 
respect to  the vertical coordhate z..The spatial resolution is typically 48 x 48 x 24 on 
a 1 Megaword CRAY-1 computer, and 64 x 64 x 32 on a 2 Megaword CRAY-XMP. 
The corresponding time-steps take 5 and 10 s respectively (40% of which is time 
waiting for I/O). As a last point, let us stress that we present only results of 'direct' 
simulations, i.e. no parametrization of the small scales (through a turbulent viscosity 
model, for example) is used in our runs. 

3. Tests of the code 
As a first test, we have computed the critical Rayleigh number for the onset of 

convection. Our results are consistent with the known value of Ra,  = 657.5 in the 
case of free-slip boundaries. For a Prandtl number of 0.2, just above the threshold, 
convection is in the form of two-dimensional rolls. We have computed the critical 
Rayleigh number for the transition to three-dimensional convection through the 
oscillatory instability and found excellent agreement with the value given in Clever 
& Busse (1974). The comparison is presented in Meneguzzi et al. (1987), a paper 
devoted to the transition to turbulent convection at low Prandtl numbers. 

A second test consisted in calculating the Nusselt number as a function of the 
Rayleigh number for Ra/Ra, ranging from 1 to 150. The Nusselt number is defined 
as the ratio of the mean vertical heat flux to the flux that would occur with pure 
conduction. It is given, in non-dimensional units, by 

N~ = v,o-a,e, (8) 

where the bar means horizontal average. Since our free-slip boundary conditions do 
not allow for a straight comparison with laboratory experiments, we confront our 
results with those of previous computations. Figure 1 shows our calculated values 
together with the curve obtained by Moore & Weiss (1973) for two-dimensional 
numerical simulations, a t  Pr = 1. The agreement with the Moore & Weiss result 
is excellent up to a Rayleigh number 80 times critical. The power law apparent in 
figure 1 has an exponent close to (but not exactly) 8. Such an exponent can readily be 
obtained by assuming that convection acts to produce a nearly isothermal layer of 
fluid, and that heat diffusion only occurs in the thermal boundary layers (Spiegel 
1971). This argument does not depend on the space dimensionality, and is therefore 
consistent with the good agreement we find. Note that for Pr = 1, the results of direct 
simulations by Curry et al. (1984) indicate that the flow is three-dimensional for 
Ra > 40 Ra,. The discrepancy a t  RalRa, larger than 80 may be a real effect, due to a 
smaller integral scale of three-dimensional turbulent convection and thus less 
efficient turbulent heat transport. However, with such runs we are reaching the 
upper limits of the Rayleigh numbers that can be simulated without serious 
truncation error. This point remains to be explored, but is not central to our paper. 
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FIGURE 1. Nusselt number Nu as a function of the Rayleigh number RalRa,. The solid line is from 
the two-dimensional results of Moore & Weiss (1973) and the dots show our results. Note that the 
three-dimensionality effects are seen only a t  large Rayleigh number. 

4. Convective dynamo without rotation 
We want to study the bifurcation from a statistically stationary turbulent regime 

without a magnetic field to a regime with a finite-amplitude b-field. An initial 
amplification of the magnetic field always occurs, but this field will eventually die out 
when the magnetic Reynolds number is too low. 

Each of our runs is characterized by four parameters: the Rayleigh number Ra, 
which is essentially the magnitude of the buoyancy force, the Prandtl number Pr and 
magnetic Prandtl number Pr,, and the rotation rate Q, which is zero for the runs 
considered in this Section. For given Ra and Pr parameters, a Reynolds number Re 
results and the magnetic Reynolds number Re, obtains from the magnetic Prandtl 
number (Re, = Pr,Re). Theoretical considerations (Batchelor 1950 ; Schluter & 
Biermann 1950) as well as previous numerical studies (Papers I and 11, and Gilman 
& Miller 1981) suggest that R e ,  is the one parameter governing the existence (or lack 
thereof) of the dynamo effect, provided the (kinetic) Reynolds number is high enough 
for the small-scale flow to be turbulent. The characteristics of all the runs presented 
in this paper are summarized in table 1. In this table, N is the number of Fourier 
modes in each horizontal space direction (the number of modes in the z-direction is 
la, Em and E, are the volume-averaged magnetic and kinetic energy, Ro is the 
Rossby number, defined as v0/S2h. Re, is the Reynolds number based on the Taylor 
microscale, which, in the present Reynolds-number range, does not differ much from 
the Reynolds number based on the integral scale I, (see table 1). Let us recall the 
definitions of I, and A :  

I, = SdkE,(k)/k/SdkE,(k), (9) 

A-' = SdkE,(k) k' /JdkE,(k) .  (10) 

I n  order to maximize the Reynolds number, we compute at  the highest Rayleigh 
number allowed by our spatial resolution, which is of the order of 100 to 200 times 
the critical Rayleigh number Ra, for the onset of convection. We let the flow evolve 
without a magnetic field until a statistically stationary regime sets in. At slightly 
supercritical Rayleigh numbers (see below, figure 6), the size of the energy-containing 
cells is of the order of the depth of the layer h, whereas at higher Rayleigh numbers 
this is no longer the case. For the N3 run, the typical size of the large eddies varies 
in time between h and ih. The temperature profile is shown in figure 2 and its 
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RUN N RalRa, Pr Pr, Ro Re Re,,, Dynamo E J E ,  Re, 

12 N1 48 100 1 3 03 16 50 no 
N2 48 100 1 5 m 20 100 1 13 
N3 64 100 1 7 m 24 170 Yes 3~ 10-4 15 
N4 48 100 1 10 co 22 220 yes 1 . 5 ~  lo-' 17 
N5 48 100 1 7 m 32 220 yes 3~ 10-4 20 
N6 64 150 1 5 m 28 140 yes 2 x  16 
N7 40 150 0.2 3 w 20 60 yes 2 x 10-2 10 
N8 64 200 0.2 2 m 100 200 yes 5~ 10-3 40 
N9 64 200 0.2 1 m 90 90 z 10-3 37 

10 R1 48 150 1 3 0.5 15 45 no 
R2 48 150 1 5 0.5 15 75 yes 5 x  10.4 10 
R3 48 150 1 10 0.5 15 150 yes 10-2 9 

27 R4 40 150 0.2 1 1  45 45 no 
R6 40 150 0.2 2 1 45 90 yes Y X  10-3 27 
R6 40 150 0.2 3 1 40 115 yes 7 x 10-2 27 

- 

- 

- 

- 

TABLE 1 .  Identification of the runs reported in this paper. The Rayleigh number Ra is measured 
in units of the critical Rayleigh number for the onset of convection Ra,, Pr is the Prandtl number, 
Pr, the magnetic Prandtl number, Ro is the Rossby number, Re the Reynolds number based on 
the integral scale, Re, the magnetic Reynolds number and Re, the Reynolds number based on the 
Taylor microscale. Note that in the presence of rotation, the dynamo appears more efficient since 
it can occur at  lower Pr,,,. The number of Fourier modes is N in the x- and y-directions and 4N in 
the z-direction. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Temperature 

FIGURE 2. Temperature profile across the convection layer before the magnetic seed is introduced. 
Ra/Ra, = 110, Pr = 1 .  Note the quasi-isothermal region inside the box, surrounded by two thermal 
boundary laters. 
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FIGURE 3. 
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k 

Spectrum of the temperature fluctuations (with respect to the conductive profile) for 
the same conditions as in figure 2. Note the broad range of excited modes. 
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FIGURE 4. Temporal variation of kinetic (solid line) and magnetic (dashed lines) energy for vari- 
ous magnetic Prandtl numbers (indicated on the curves). Ra/Ra, = 100, Pr = 1, no rotation 
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FIGURE 5 (u, b ) .  For caption see facing page. 



FIGURE 5. (a )  (i) Projection of the velocity field on plane z = 0;  (a)  (ii) contour plot of 
the s-component; ( b )  as (a )  but for plane y = 0;  (c) as ( a )  but for z = 0.5. Run N6. 

Turbulent dynamos driven by convection 305 



306 M .  Meneguzzi and A .  Pouquet 
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FIQURE 6 ( a , b ) .  For caption see facing page. 
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FIGURE 6. Same as figure 5 for the magnetic field. 
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spectrum in figure 3. As expected, the flow displays a roughly isothermal central 
part, surrounded by the upper and lower thermal boundary layers. Note also that 
convection provides a forcing of the velocity field in a wide range of wavenumbers. 

After a statistically stationary state has developed, we introduce a seed magnetic 
field of low intensity ( E J E ,  x 5 x lop5) and confined to the large scales of the flow, 
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FIGURE 7. Temporal variation of the y-component of (a) the velocity and ( b )  the magnetic field 
for run N6 a t  a given point in space. PJote the faster timescale of the magnetic field variation. 

and look at its eventual fate for times long compared with the large-scale eddy 
turnover time, which is of the order 0.01 in our calculations. We show in figure 4 the 
evolution of the kinetic (upper curve) and magnetic (lower curves) energies as a 
function of time for various magnetic Prandtl numbers Pr,. We see that, in the unit,s 
chosen here, the r.m.s. velocity is approximately equal to 100, while the r.m.s. Alfvkn 
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FIGURE 8. Projection of (a) the velocity and the ( b )  magnetic field onto the 5 = 0 plane; 
Ra/Ra, = 80, Pr = Pr, = 1. 

speed stabilizes a t  around 2 in the least favourable case (Pr, = 5 ) .  This corresponds 
to a value of Remc of around 100, slightly larger but not inconsistent with the results 
of random forcing studies (paper 11) and closure calculations (paper I). Note that in 
all three studies, the Reynolds number is computed using the integral scale 1, (see 
(9)), and that for comparison with laboratory studies, such Reynolds numbers should 
be upgraded by a factor 2 7 ~  We show in figures 5 and 6 respectively the velocity and 
magnetic fields projected onto three orthogonal planes for run N6. The typical scales 
of b and v are the same but, as we found in the random forcing case (paper 11), b is 
more intermittent than v .  This can also be deduced from the fact that although most 
of the energy of the flow is in kinetic form, the maximum values of b and v are roughly 
equal. The origin of such an intermittent behaviour is not clear. It could be because 
we are close to the transition from a non-magnetic to a magnetic state ; indeed, owing 
to the lack of spatial resolution, only slightly supercritical dynamos have been 
obtained up to now by direct numerical simulations. If this were the case, the 
intermittency of b observed here should disappear at higher Re,. On the other hand, 
this intermittency could be of a dynamical nature. For example, b may grow 
preferentially where strong velocity gradients are present, or in regions of high 
vorticity. In fact, there appears to be some correlation between the magnetic field b 
and the vorticity o. This may be attributed to the fact that both variables follow 
similar equations when close to the kinematical case (Em < E,) (Batchelor 1950). We 
show in figure 7 the temporal evolution of the velocity (7a)  and of the magnetic field 
(7 b) at a given point in space, away from the boundaries. The magnetic field exhibits 
a more rapid, probably chaotic (Meneguzzi et al. 19871, behaviour than the velocity. 
Note that the characteristic scale of b is smaller than that of v ,  the Alfvhn wave 
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FIGURE 9. Kinetic (solid line) and magnetic (dashed line) energy spectrum a t  t = 0.14. The results 
of two calculations at  different resolution are shown : run N5 (N  = 48) and run N3 (8 = 64, curves 
with inserted dots). 

mechanism (Pouquet et al. 1976) being faster and thus more efficient a t  small scales. 
It may also be linked to the spatial intermittency of b. 

At these Rayleigh numbers and in the dynamo regime, no conspicuous correlation 
seems to exist between b and u itself. This is not the case at moderate Rayleigh 
numbers, as can be seen in figure 8, where the v-  and b-field projections on a vertical 
plane are shown for Ra = 50Ra,, Pr = 1 and Pr, = 2. 

Information on the flow can also be obtained using statistical quantities, such as 
shell-averaged Fourier spectra. I n  our runs at Prandtl numbers of order unity, no 
serious truncation is seen for the kinetic energy spectrum, for which the small scales 
are well resolved. Such is not the case for the magnetic field when the magnetic 
Reynolds number is high. The question then arises as to whether underestimating the 
Joule dissipation-owing to the lack of small-scale resolution in b-could affect our 
results. In order to check this we have performed two runs with the same values of 
the parameters but with resolutions N = 48 (run N5) and N = 64 (run N3). Figure 9 
shows the energy spectra obtained in these runs. The discrepancy in the large scales 
is due to a combination of large fluctuations (there is a small number of points in the 
first few shells over which spectra are averaged), and to the fact that the random 
initial conditions centred in the large scales are not identical in the two runs. On the 
other hand, truncation shows up in the small scales, but the two spectra are 
nevertheless comparable. The dynamo effect present in the N = 48 run is also present 
in the N = 64 one, with roughly the same magnetic energy. This suggests that the 
flow is well resolved and that qualitatively, our results on the existence of a dynamo 
effect produced by turbulent convection are correct. 

The slight excess of magnetic energy over its kinetic counterpart a t  small scales 
shown in figure 9 could be due to the fact that the magnetic Prandtl number Pr, is 
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." 
1 10 

k 
FIGURE 10. Growth of large-scale magnetic energy for a run with random forcing due to  inverse 
cascade of magnetic helicity. Continuous lines : magnetic energy spectra at different times, given 
on the curves ; dashed line : kinetic energy spectrum at t = 45. Here, the unit time is the large-scale 
eddy-turnover time. 

above unity. However, we should note that in all the runs we have performed, both 
in the convective and in the random forcing case, in three as well as in two 
dimensions, and also in closure calculations, this is most often the case. It is also 
found in satellite observations of the solar wind (Smith, Matthaeus & Goldstein 
1983). 

5. The role of helicity 
Helicity is known to play an important role, although not a necessary one, in the 

dynamo problem (see for example Moffatt 1978 ; Parker 1979 ; Zeldovich, Ruzmaikin 
& Sokolov (1983); and also papers I and 11). It is defined as ( v - a ) ,  where ( ) means 
space average and o = curl v .  We use here the relative helicity H = ( v - w ) / ( v z d ) k  
A velocity field is said to have maximal helicity when H = & 1. Similarly, magnetic 
helicity H ,  is defined as ( a - b ) ,  where a is the magnetic potential. It has been 
conjectured on a statistical basis (Frisch et al. 1975) and found in second-order 
closure calculations (Pouquet et al. 1976) that H ,  undergoes an inverse cascade 
towards large scales. This induces a growth of the large-scale magnetic field itself. 
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FIQURE 11. Temporal variation of the relative kinetic helicity for a run without rotation 
(run N6) and Ra/Ra, = 150, Pr = 1, Pr,  = 5 .  
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FIGURE 12. Temporal evolution of the kinetic (upper curve) and magnetic (lower curves) energy for 
various magnetic Prandtl numbers (as labelled on the curves). Ra/Ra, = 200, Pr = 0.2 and no 
rotation. 
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This effect is observed in MHD numerical simulations (paper 11) (see also Zeldovich 
et al. 1983, p. 191). In figure 10, we show as a function of time the magnetic energy 
spectrum obtained in one of the 323 runs presented in paper I1 (solid lines), with the 
kinetic energy spectrum (dashed line) having reached a steady state. In this 
simulation, the flow was homogeneous, and the mechanical energy source was 
represented by a narrow-band (in Fourier space) random forcing term in the velocity 
equation, with a high helicity. In the unforced case, i t  is likely, that only a positive 
energy transfer a t  large scales can obtain (Pouquet & Patterson 1978). Such inverse 
transfer in Fourier space corresponds to the formation of large-scale force-free 
structures and is an example of self-organisation in MHD flows. 

Contrary to the homogeneous case with random forcing, we cannot in the case of 
convection impose a given helicity to  the v-field. Moreover, we cannot impose a 
narrow-band forcing a t  a given wavenumber. The forcing due to the temperature 
gradient covers a wide range of scales (at Prandtl numbers of order 1) .  An inverse 
magnetic helicity cascade is therefore difficult to observe. Figure 11 displays the 
relative kinetic helicity versus time for the run N6. H seems to fluctuate around 0, 
with IHI-values not exceeding the 10% level, although locally the helicity density 
v - o can be higher. These fluctuations occur with a characteristic time of a few eddy 
turnover times. It has been noted (Kraichnan 1976) that even when the relative 
helicity is low, spatial fluctuations of helicity density may play an important 
dynamical role in the dynamo mechanism by leading to a negative turbulent 
magnetic diffusivity. This may be the basis of the dynamo we observe here. On the 
other hand, in a recent study (Gilbert et at. 1988), i t  was found that the large-scale 
magnetic field can become unstable in a non-helical flow (Zero helicity spectrum) 
provided the small-scale turbulence be non-parity-invariant. Is it possible that local 
fluctuations of non-parity invariance in a globally parity-invariant flow also produce 
a negative magnetic diffusivity 1 No calculation analogous to the one by Kraichnan 
(1976) has been done yet. Note that in both cases, the theoretical calculations are 
done for large-scale separation L/1, where L is the scale of the mean magnetic field 
and 1 the turbulence scale. It is therefore difficult to state a t  this point whether one 
of the above mechanisms is responsible for the dynamos we observe. 

Similar calculations were done a t  Pr = 0.2 (runs N7 and N9) to check whether a 
higher level of turbulence in the small scales would result in a more powerful dynamo. 
Figure 12 shows the evolution of the magnetic and kinetic energies versus time in this 
case. We obtain a dynamo effect for lower Pr, than before. However, in terms of 
magnetic Reynolds number, the results are essentially the same. The value of Remc 
is around 100 as in the Pr = 1 case. This is consistent with Re, being the relevant 
parameter of the bifurcation from a pure-fluid state to an MHD state. 

6. Convective dynamo in the presence of rotation 
The periodic boundary conditions in the x- and y-directions do not allow us to 

study the dynamo that would be produced by a combination of convection and 
differential rotation, which is believed to be a t  the origin of the terrestrial and solar 
dynamos. We can, however, study the effect of a solid-body rotation SZ around the 
vertical axis, which calls for adding a Coriolis force term in the momentum equation. 
This term is homogeneous and consistent with periodicity in x and y. We chose SZ so 
that the Coriolis term has the same order of magnitude as the nonlinear term, i.e. the 
Rossby number Ro is close to 1. Special flows of this type have been studied by 
Soward (1974). 
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FIQURE 13. Temporal evolution of the kinetic (upper curve) and magnetic (lower curves) energy for 
various magnetic Prandtl numbers (labelled on the curves) for runs with rotation : Ra/Ra, = 100, 
Pr = 1, Ro = 0.5. 

FIGURE 14. Temporal variation of the relative kinetic helicity for a flow with rotation (solid line, 
Ro = 0.5) and without (dotted line); Ra/Ra, = 100, Pr = 1, Pr, = 5 .  Note the similarity both in 
amplitude and in timescale. 
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F I G ~ R E  15. Horizontally averaged helicity density as a function of z for runs R6 (solid line) 
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Figure 13 shows, as in previous cases, the energies Em and E,  versus time for 
different values of Pr, at Pr = 1 and Ra = 100Ra, (runs R1 to R3). A dynamo effect 
seems to  exist for a value of P,,, lower than before. The critical magnetic Reynolds 
number may therefore be slightly lower than in the non-rotating case. Visualizations 
of the flow do not show any conspicuous difference to the non-rotating case. 
Furthermore, as shown in figure 14, the helicity as a function of time seems to  behave 
essentially in the same way as before. We have also repeated the calculations a t  
Pr = 0.2 including rotation (runs R4 to R6). Again, the dynamo effect appears at a 
lower Re,. One can see from table 1 that in the rotating case Re, is in the range 45-75, 
as compared to 100 in the non-rotating case. Note also the higher ratio E,/E, that  
obtains for finite Rossby number, close to 10%. Again, a plot of relative helicity 
versus time does not show any difference to the case without rotation. Helicity 
density, however, differs in the rotating and non-rotating case. Figure 15, which 
shows the horizontally averaged helicity density as a function of z for runs R6 and 
N6, suggests that, in absolute value, this quantity increases with z in the rotating 
case R6 (solid line) while it fluctuates around a constant value in the N6 case (dashed 
line). 

7. Discussion 
In order to check that the Lorentz force is indeed responsible for the saturation of 

the magnetic field growth, we have suppressed it in one of our runs (run N10) a little 
before the end of the linear growth phase. The result is shown in figure 16. One can 
see that this has no effect during the linear phase, but that  the saturation does not 
occur when the Lorentz force is absent. In the strongly helical case, a description of 
thc saturation mechanism was proposed (Pouquet et al. 1976), involving the 
formation of large-scale force-free fields. But in the non-helical case, the mechanism 

I 1  FLM 205 
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FIQURE 16. Long-time evolution (up to one viscous time) of the total kinetic (upper curve) and 
magnetic (lower curve, dotted line) energies for run N10. Note the two phases in the growth of the 
magnetic energy. The lower solid curve shows the result of the removal of the Lorentz force term 
in the equations. 

is less clear. It may be linked to the formation of large-scale coherent structures, 
which occur through turbulent transfer and nonlinear interactions, and are self- 
defeating in the sense that they produce force-free fields with maximal kinetic and/or 
magnetic helicity. It should be recalled here that a force-free state is that predicted 
by selective decay mechanisms (Matthaeus & Montgomery 1980) in which the energy 
is minimized while keeping constant the proper physical variables that may be quasi- 
conserved (magnetic potential in two dimensions, magnetic helicity in three 
dimensions, and cross-correlation in both dimensions). There have been several 
recent studies of the behaviour of the helicity in a non-conducting fluid. For example, 
careful analysis of a three-dimensional channel flow or periodic flow (Shtilman et al. 
1985) show that force-free helical flows are found mostly in regions of low dissipation 
and or large scales. In  MHD, another possibility to weaken nonlinear interactions 
through turbulent mode coupling is due to the growth of velocity-magnetic field 
correlations (Dobrowolny, Mangeney & Veltri 1980; Grappin et al. 1981 ; Matthaeus, 
Goldstein & Montgomery 1983; Grappin 1986; Pouquet, Meneguzzi & Frisch 1986). 
In  two dimensions, the parameter space has been scanned, in order to determine 
what are the various regimes that arise (Matthaeus & Montgomery 1984; Ting, 
Matthaeus & Montgomery 1986). This work remains to be done in three dimensions. 

The computational cost of the runs reported here, on a 2 Megawords Cray-XMP, 
is rather prohibitive. At a resolution of 643, i t  takes 20 hours of CPU time, and twice 
as much 1/0 time, to reach t = 1 (in units of viscous diffusion times a t  large scales). 
Thus we have explored the parameter space letting saturation plateaux establish for 
moderate times. We have also performed one run a t  high resolution (N10) up to 
t = 1 .  For the magnetic Prandtl number simulated here, and considering the fact that 
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the characteristic scale of the magnetic field that is growing is two to  three times 
smaller than that of the velocity field, this corresponds to roughly one half-Joule 
dissipation time at  those scales. We show in figure 16 the temporal variation of the 
kinetic and magnetic energy for that run. The magnetic energy, after a first rapid 
initial growth, saturates until t = 0.3; it  then undergoes a second slower growing 
phase (roughly up to t = 0.5) and saturates again at a higher value, with small 
temporal fluctuations. We have looked in detail at the evolution of individual angle- 
averaged Fourier modes from k = kmin to k = 7kmin, and found no prevailing mode in 
either of the growth phases. This is not surprising since the convective forcing 
spectrum is broad-band. Finally, let us point out that with a random forcing (paper 
II), we simulated the flow for two Joule diffusion times of the large scales and 
observed a continual saturation plateau of the magnetic energy up to the last 
moment. 

In  conclusion, our direct three-dimensional numerical simulations show that 
Boussinesq convection cac produce a turbulent dynamo without the help of 
differential rotation. This may be of particular interest in the solar case, since recent 
observational data dealing with high-resolution temporal spectra indicate that 
differential rotation with depth is smaller than previously thought. It is not clear 
whether the effect we observe can be explained by a negative turbulent diffusivity 
produced by helicity fluctuations (Kraichnan 1976) or non-parity-invariance 
fluctuations (Gilbert et al. 1988). With present day computers such as the Cray-1 on 
which we have performed most of our calculations, the lack of resolution is severely 
felt because of the relatively small available memory. On the next generation of 
machines, three-dimensional simulations will be the rule rather than the exception. 
Many questions that have remained unanswered will progressively become accessible. 
The most urgent, in our opinion, may be to run for several Joule diffusion times a 
high-resolution non-helical dynamo, either with random forcing or in the convective 
case. This is now in progress on the Cray-2 of the CCVR. Other problems concern the 
spatial structure of the magnetic field : does it organize itself in elongated filaments, 
as in the case of the kinematic dynamo with an ABC flow (Galloway & Frisch 1986) ? 
Does the intermittency of the magnetic field persist well above the critical magnetic 
Reynolds number 1 Also of interest is the possible correlation between the growing 
magnetic field and the vorticity for example, or with other velocity-related variables 
such as helicity or rate of strain. Such problems require access to powerful and well- 
resolved visualization equipment with fast three-dimensional software and represent 
one of the present stumbling blocks of numerical experimentation. Finally, a clear 
separation between the small-scale turbulence and the large-scale growing field 
may now be also attainable. This will allow for observing a genuine alpha-effect, 
and its variants (negative magnetic diffusivity , non-helical non-parity-invariant 
instabilities, etc . . .), and should lead to a better theoretical understanding of the 
long-standing dynamo problem. 

We are grateful to D. Galloway and J. Leorat for fruitful discussions. The 
numerical computations reported here were performed either on the Cray-1S of the 
Centre de Calcul Vectoriel pour la Recherche, Ecole Polytechnique, Palaiseau or on 
the Cray-XMP of CIS1 (Saclay). We are grateful to both. We also want to thank C. 
Temperton for letting us use his fast Fourier transform code. Finally, the graphics 
displayed in this paper were done using the software of the National Centre for 
Atmospheric Research, which is also thanked. 
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